Copied to
clipboard

G = C42:8D10order 320 = 26·5

8th semidirect product of C42 and D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42:8D10, C4:C4:42D10, (C4xD20):7C2, (C2xC4):11D20, (C2xC20):10D4, (C4xC20):5C22, C4.70(C2xD20), D10:1(C4oD4), C4:D20:42C2, C20.223(C2xD4), C42:C2:8D5, C22:D20:29C2, D10:2Q8:47C2, (C2xD20):52C22, (C2xC10).68C24, C4:Dic5:55C22, C22:C4.92D10, C2.14(C22xD20), C22.19(C2xD20), C10.12(C22xD4), (C2xC20).143C23, C5:1(C22.19C24), (C22xC4).365D10, D10:C4:51C22, C22.97(C23xD5), (C2xDic10):61C22, C22.D20:32C2, (C22xD5).18C23, C23.156(C22xD5), (C22xC20).228C22, (C22xC10).138C23, (C2xDic5).207C23, (C23xD5).116C22, (C22xDic5).240C22, C2.9(D5xC4oD4), (D5xC22xC4):2C2, (C2xC4xD5):44C22, (C2xC4oD20):17C2, (C5xC4:C4):52C22, (C2xC10).49(C2xD4), C10.133(C2xC4oD4), (C5xC42:C2):10C2, (C2xC4).575(C22xD5), (C2xC5:D4).107C22, (C5xC22:C4).100C22, SmallGroup(320,1196)

Series: Derived Chief Lower central Upper central

C1C2xC10 — C42:8D10
C1C5C10C2xC10C22xD5C23xD5D5xC22xC4 — C42:8D10
C5C2xC10 — C42:8D10
C1C2xC4C42:C2

Generators and relations for C42:8D10
 G = < a,b,c,d | a4=b4=c10=d2=1, ab=ba, cac-1=ab2, dad=a-1, bc=cb, bd=db, dcd=c-1 >

Subgroups: 1310 in 330 conjugacy classes, 115 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, D5, C10, C10, C10, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, C24, Dic5, C20, C20, D10, D10, C2xC10, C2xC10, C2xC10, C42:C2, C4xD4, C22wrC2, C4:D4, C22:Q8, C22.D4, C23xC4, C2xC4oD4, Dic10, C4xD5, D20, C2xDic5, C2xDic5, C5:D4, C2xC20, C2xC20, C22xD5, C22xD5, C22xC10, C22.19C24, C4:Dic5, D10:C4, C4xC20, C5xC22:C4, C5xC4:C4, C2xDic10, C2xC4xD5, C2xC4xD5, C2xD20, C2xD20, C4oD20, C22xDic5, C2xC5:D4, C22xC20, C23xD5, C4xD20, C22:D20, C22.D20, C4:D20, D10:2Q8, C5xC42:C2, D5xC22xC4, C2xC4oD20, C42:8D10
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C4oD4, C24, D10, C22xD4, C2xC4oD4, D20, C22xD5, C22.19C24, C2xD20, C23xD5, C22xD20, D5xC4oD4, C42:8D10

Smallest permutation representation of C42:8D10
On 80 points
Generators in S80
(1 45 6 37)(2 33 7 41)(3 47 8 39)(4 35 9 43)(5 49 10 31)(11 65 77 70)(12 54 78 59)(13 67 79 62)(14 56 80 51)(15 69 71 64)(16 58 72 53)(17 61 73 66)(18 60 74 55)(19 63 75 68)(20 52 76 57)(21 46 26 38)(22 34 27 42)(23 48 28 40)(24 36 29 44)(25 50 30 32)
(1 58 30 70)(2 59 21 61)(3 60 22 62)(4 51 23 63)(5 52 24 64)(6 53 25 65)(7 54 26 66)(8 55 27 67)(9 56 28 68)(10 57 29 69)(11 45 72 32)(12 46 73 33)(13 47 74 34)(14 48 75 35)(15 49 76 36)(16 50 77 37)(17 41 78 38)(18 42 79 39)(19 43 80 40)(20 44 71 31)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 30)(11 76)(12 75)(13 74)(14 73)(15 72)(16 71)(17 80)(18 79)(19 78)(20 77)(31 50)(32 49)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 42)(40 41)(51 66)(52 65)(53 64)(54 63)(55 62)(56 61)(57 70)(58 69)(59 68)(60 67)

G:=sub<Sym(80)| (1,45,6,37)(2,33,7,41)(3,47,8,39)(4,35,9,43)(5,49,10,31)(11,65,77,70)(12,54,78,59)(13,67,79,62)(14,56,80,51)(15,69,71,64)(16,58,72,53)(17,61,73,66)(18,60,74,55)(19,63,75,68)(20,52,76,57)(21,46,26,38)(22,34,27,42)(23,48,28,40)(24,36,29,44)(25,50,30,32), (1,58,30,70)(2,59,21,61)(3,60,22,62)(4,51,23,63)(5,52,24,64)(6,53,25,65)(7,54,26,66)(8,55,27,67)(9,56,28,68)(10,57,29,69)(11,45,72,32)(12,46,73,33)(13,47,74,34)(14,48,75,35)(15,49,76,36)(16,50,77,37)(17,41,78,38)(18,42,79,39)(19,43,80,40)(20,44,71,31), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,30)(11,76)(12,75)(13,74)(14,73)(15,72)(16,71)(17,80)(18,79)(19,78)(20,77)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(51,66)(52,65)(53,64)(54,63)(55,62)(56,61)(57,70)(58,69)(59,68)(60,67)>;

G:=Group( (1,45,6,37)(2,33,7,41)(3,47,8,39)(4,35,9,43)(5,49,10,31)(11,65,77,70)(12,54,78,59)(13,67,79,62)(14,56,80,51)(15,69,71,64)(16,58,72,53)(17,61,73,66)(18,60,74,55)(19,63,75,68)(20,52,76,57)(21,46,26,38)(22,34,27,42)(23,48,28,40)(24,36,29,44)(25,50,30,32), (1,58,30,70)(2,59,21,61)(3,60,22,62)(4,51,23,63)(5,52,24,64)(6,53,25,65)(7,54,26,66)(8,55,27,67)(9,56,28,68)(10,57,29,69)(11,45,72,32)(12,46,73,33)(13,47,74,34)(14,48,75,35)(15,49,76,36)(16,50,77,37)(17,41,78,38)(18,42,79,39)(19,43,80,40)(20,44,71,31), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,30)(11,76)(12,75)(13,74)(14,73)(15,72)(16,71)(17,80)(18,79)(19,78)(20,77)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(51,66)(52,65)(53,64)(54,63)(55,62)(56,61)(57,70)(58,69)(59,68)(60,67) );

G=PermutationGroup([[(1,45,6,37),(2,33,7,41),(3,47,8,39),(4,35,9,43),(5,49,10,31),(11,65,77,70),(12,54,78,59),(13,67,79,62),(14,56,80,51),(15,69,71,64),(16,58,72,53),(17,61,73,66),(18,60,74,55),(19,63,75,68),(20,52,76,57),(21,46,26,38),(22,34,27,42),(23,48,28,40),(24,36,29,44),(25,50,30,32)], [(1,58,30,70),(2,59,21,61),(3,60,22,62),(4,51,23,63),(5,52,24,64),(6,53,25,65),(7,54,26,66),(8,55,27,67),(9,56,28,68),(10,57,29,69),(11,45,72,32),(12,46,73,33),(13,47,74,34),(14,48,75,35),(15,49,76,36),(16,50,77,37),(17,41,78,38),(18,42,79,39),(19,43,80,40),(20,44,71,31)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,30),(11,76),(12,75),(13,74),(14,73),(15,72),(16,71),(17,80),(18,79),(19,78),(20,77),(31,50),(32,49),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,42),(40,41),(51,66),(52,65),(53,64),(54,63),(55,62),(56,61),(57,70),(58,69),(59,68),(60,67)]])

68 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P5A5B10A···10F10G10H10I10J20A···20H20I···20AB
order12222222222244444444444444445510···101010101020···2020···20
size1111221010101020201111224444101010102020222···244442···24···4

68 irreducible representations

dim111111111222222224
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D5C4oD4D10D10D10D10D20D5xC4oD4
kernelC42:8D10C4xD20C22:D20C22.D20C4:D20D10:2Q8C5xC42:C2D5xC22xC4C2xC4oD20C2xC20C42:C2D10C42C22:C4C4:C4C22xC4C2xC4C2
# reps1422221114284442168

Matrix representation of C42:8D10 in GL4(F41) generated by

303200
91100
004032
0001
,
1000
0100
0090
0009
,
343400
7100
0010
001840
,
343400
1700
00400
00040
G:=sub<GL(4,GF(41))| [30,9,0,0,32,11,0,0,0,0,40,0,0,0,32,1],[1,0,0,0,0,1,0,0,0,0,9,0,0,0,0,9],[34,7,0,0,34,1,0,0,0,0,1,18,0,0,0,40],[34,1,0,0,34,7,0,0,0,0,40,0,0,0,0,40] >;

C42:8D10 in GAP, Magma, Sage, TeX

C_4^2\rtimes_8D_{10}
% in TeX

G:=Group("C4^2:8D10");
// GroupNames label

G:=SmallGroup(320,1196);
// by ID

G=gap.SmallGroup(320,1196);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,675,570,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d=a^-1,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<